
PROOF

Inheritance-based models of the lexicon

James Kilbury, Wiebke Petersen, Christof Rumpf

1 Emergence of the present view of the lexicon

A rapid and remarkable development took place within computational
linguistics in the years immediately following the introduction of
unification-based models of language, in particular Lexical Functional
Grammar (LFG) and Generalized Phrase Structure Grammar (GPSG),
which employ feature structures to represent linguistic information. By the
end of the 1980s a consensus had emerged, according to which the lexicon,
which pairs word forms with feature structures, constitutes the main
repository of information in a language. Furthermore, hierarchical
structuring had come to be viewed as an essential aspect or perhaps even
the most salient characteristic of the lexicon (cf. Briscoe et al. 1993).

GPSG, as conceived in Gazdar & Pullum (1982) and even in
Gazdar et al. (1985), still largely represents the older, dichotomous view of
the lexicon. Here major aspects of linguistic structure were encoded in
syntactic rules, many of which later came to be regarded as stating the
possible complement structures of verbs, i.e. lexical information. Later
developments in the treatment of subcategorization are only alluded to in a
footnote (cf. Gazdar et al. 1985: 107). While the question “How is a
classification imposed on the content of the lexicon by the system of
features” is raised (p. 13), the answer of GPSG does not explicitly model
the hierarchical inheritance relations inherent in lexical classifications.
Rather, these relations are captured in logical feature co-occurrence
restrictions (FCRs) and feature specification defaults (FSDs), the latter of
which, prophetically, are nonmonotonic.

From the start the lexicalist orientation was prominent in LFG (cf.
Bresnan 1982, therein Kaplan & Bresnan 1982) and reached a peak in the
radical lexicalism of Karttunen (1986), which uses the framework of
categorial grammar to shift the entirety of linguistic description to the
lexicon. The move toward the lexicalist view was independent of
hierarchical modelling, which emerged in other work. In particular,
Flickinger (1987) pioneered the explicit description of relations between
English verb classes in terms of inheritance hierarchies. On a separate front,

1

PROOF

de Smedt (1984) initiated the use of inheritance-based representation
formalisms to capture the structure of inflectional classes. Practical
advantages of hierarchical lexica quickly became apparent and include the
economical representation, integrity, homogeneity, and updating of data.
The grammar formalism PATR-II (cf. Shieber et al. 1983) provides
templates as an indispensable formal device for stating inheritance relations
in a hierarchy, the consequences of which are clear to the authors (p. 62):

But our notation does not only allow convenient abbreviations; it
also plays an important role in the linguist’s use of the formalism.
[...] perhaps most importantly, grammar writers can use the
notational tools to express generalizations they could not state in
the “pure” unification notation of the formalism.

Head-driven Phrase Structure Grammar (HPSG), as presented in Pollard &
Sag (1987) carries over much of GPSG but restructures the model in terms
of the hierarchical lexicalist framework. The introduction of the sign as a
uniform data structure for the representation of both lexical and phrasal
information, together with the integration of all linguistic levels within the
sign, provides the last means needed in order to state all information about
a language within an inheritance hierarchy defining relations between
signs.

Crucially, HPSG adopts no obvious counterpart for the FCRs of
GPSG, although the conditional feature structures (Pollard & Sag 1987:
43) of HPSG could have been employed for this purpose. Instead, the
HPSG strategy for avoiding lexical redundancy lies in the use of
inheritance hierarchies: “Structuring the lexicon in terms of an inheritance
hierarchy of types has made it possible to factor out information common
to many lexical entries, thereby greatly reducing lexical redundancy” (Sag
& Wasow 1999: 202). The informational domain consists of typed feature
structures, where the types serve two functions: On the one hand they allow
access to embedded feature structures appearing as values of features; this
permits the formulation of generalizations about such substructures. On the
other hand, the types bear appropriateness conditions which restrict the set
of feature structures of this type; such statements are feature-type pairs. By
ordering the types in an inheritance hierarchy, the so-called type signature,
in which appropriateness conditions are inherited, further redundancies are
avoided.

It was clear to linguists that HPSG had replaced the FCRs of GPSG
with inheritance hierarchies of types, but the relations between these formal

2

PROOF

devices were misunderstood and hardly questioned. Clearly, the devices
had to be related in some way, but no formal framework was available
within which the relations could be made explicit. Gerdemann & King
(1994, 1993) present a procedural method for transforming a type signature
so that it expresses an FCR. With Formal Concept Analysis (FCA, cf.
Ganter & Wille 1999) a general framework is now available which allows
the equivalence of the devices to be explained in a transparent and
declarative fashion, which we will show in §3.3.1 below.

The subsequent development of HPSG and its modelling of the
lexicon is in some ways paradoxical, showing an accumulation of rather ad
hoc and baroque devices like functional values (cf. Pollard & Sag 1994) on
the one hand, and a powerful striving toward homogeneity on the other.
The role of the type hierarchy in HPSG has recently been extended to deal
with morphological patterns of word formation (cf. Riehemann 1998,
König 1999), and the homogeneity of HPSG is also furthered by the efforts
of Bouma et al. (2000) to replace the isolated formal device of lexical rules
with constraints within the type hierarchy. The motivation for this move
turns out to lie particularly in the desire of HPSG proponents to avoid the
nonmontonicity of lexical rules, whereby “by default, information in the
input [which is not changed by the rule] is assumed to be included in the
output” (p. 55).

This highlights the role of nonmonotonicity as the principal point
of contention remaining after the synthesis achieved by HPSG in 1987. The
usefulness of nonmonotonic devices, like overwriting in the lexical rules of
PATR-II (cf. Shieber 1986: 62 reporting earlier work) is apparent, but
reservation is also noted (Shieber 1983: 63):

The linguistic status of templates and lexical rules needs to be
determined. One could adopt a simple view and use lexical rules
every time the power of pure [i.e. monotonic] unification with a
template does not suffice, i.e. whenever changing to the graph
structure of lexical entries requires more than the simple addition
of arcs and nodes. It would be more gratifying, though, if one had
a clearer correspondence between the use of notational tools, on
the one hand, and classes of linguistic regularities, on the other.

Indeed, nonmonotonic devices like completeness in LFG and FSDs in
GPSG were already in wide linguistic use by the mid 1980s. Gazdar (1987)
points to the pervasiveness of phenomena in natural language that call for
nonmonotonic means to describe continua of regularities, subregularities,

3

PROOF

and exceptions. The language DATR for lexical knowledge representation
(cf. Evans & Gazdar 1989, 1996) can be seen as a natural development in
this context. While Kilbury et al. (1991) propose the use of DATR in
conjunction with feature-based unification formalisms, Krieger &
Nerbonne (1993) adamantly reject nonmonotonicity in such formalisms.
Viewed in retrospect, neither of the two positions was truly successful,
since DATR practitioners never produced a fully convincing integration of
DATR with formalisms like HPSG that permitted tractable
implementations, while the critics of DATR were unable to dissuade many
HPSG followers from the attractiveness of nonmonotonicity for capturing
linguistic generalizations. Symptomatic of this situation was the series of
proposals for a synthesis in the form of some kind of default unification (cf.
Lascarides & Copestake 1999 for a late position), which remains inefficient
and has not been adopted in the canon of HPSG but has been integrated in
the Linguistic Knowledge Building (LKB) system (cf. Copestake 2002).

Thus, the turn of the millenium reveals widespread consensus about
the fundamental organization of the lexicon as an inheritance hierarchy
accompanied by disagreement over the role of nonmonotonicity, which has
remained attractive because of the stronger generalizations and simpler
hierarchies that it permits. An issue which has been largely skirted centers
on nonmonotonicity as a property of unification or inheritance. Of course,
inheritance can be implemented with unification, but the nonmonotonicity
of DATR involves only inheritance and is unrelated to unification.
Regarding default unification the LKB implementation “assumes that
defaults are only relevant with respect to an inheritance hierarchy”
(Copestake 2002: 204).

In §2 below we introduce our framework QType, which provides
for a restriction of nonmonotonicity to inheritance within type signatures;
the operation of unification at parsetime is in turn entirely monotonic. This
captures the expressiveness of nonmonotonicity for linguistic
generalizations involving subregularities and exceptions while preserving
the efficiency and transparency of monotonic unification for parsetime
processing. We thereby seek to combine advantages of DATR with
frameworks like HPSG within a single integrated formalism.

On an entirely separate front of computational linguistics, the past
two decades have witnessed a rapid growth of corpus-based empirical work
for lexicon development (cf. Boguraev & Pustejovsky 1996). Parallel to
this there has been a strong emphasis on inductive procedures and learning

4

PROOF

algorithms (cf. Daelemans & Durieux 2000), but this has been almost
entirely disjunct from theoretical work on feature-based formalisms, with
no bridge that connects the two domains.

Here, too, in §3 below this paper aims at a synthesis. Modern
HPSG-like descriptions of languages have become so complex that their
type hierarchies can hardly be constructed manually, and this problem
exists independently of the extraction of large bodies of data from corpora.
Our work within the framework of Formal Concept Analysis presented
below introduces essential techniques that help to overcome the difficulties
of developing highly complex type hierarchies by hand. The advantages of
such automatically induced hierarchies lie in their coherence, non-
arbitrariness, and compatibility with algorithms for inserting new lexical
items. These techniques of §3 can in turn be employed for the induction of
type signatures like those of §2 in QType.

The rest of this paper will thus focus on our formalism QType (§2),
its special use of nonmonotonicity (§2.11), and our use of FCA in particular
to explicate the relations between FCRs and type signatures (§3.3.1) and in
general for the automatic induction of inheritance hierarchies for lexical
description (§3).

5

PROOF

2 QType: A grammar-development environment

2.1 Survey of QType

QType is a grammar-development environment for constraint-
based (i.e., unification-based) grammars. The core of QType consists of
typed feature structures, type constraints, and relational constraints. These
devices suffice for the development, e.g., of HPSG-grammars, and
‘parsing’ then reduces to constraint solving, where all the information of
categories is encoded solely in their associated feature structures, which are
unified with other feature structures. In order to permit the use of
established parsing techniques like left-corner parsing with linking based
on a context-free phrase-structure skeleton, QType also allows syntax rules
and lexical entries to be specified. Lexical rules with copying via
nonmonotonic unification supplements this inventory. The most important
feature is the possibility of employing default inheritance in the type
signature, i.e., the description of the type hierarchy. Type conflicts are
resolved with a strategy according to which more specific information has
precedence. The nonmonotonic type signature is compiled offline into a
monotonic counterpart, so that only the efficient operation of monotonic
unification needs to be computed at runtime. In the following, the
monotonic component of QType will first be presented as a basis for the
comparison with related formalisms, before the nonmonotonic extension is
introduced.

2.2 The type signature

The type signature serves to define the classes of well-formed or possible
feature structures of a grammar. A typed feature structure consists of a type
and a set of attribute-value pairs, where the associated pairs must be
specified explicitly for each type. Types and attributes are atomic
identifiers, and values are feature structures. Atomic values are regarded as
feature structures which are not associated with any attribute-value pairs
and therefore consist only of a type. The type system of QType will now be
described before attribute-value pairs and their inheritance are discussed in
the subsequent section.

6

PROOF

2.2.1 The type system

The type system of QType consists of a partial order on types which, in the
monotonic component, is interpreted as subsumption. The order can be
represented with a directed acyclic graph whose nodes are labelled with
type names and whose edges denote subsumption. There is exactly one
given node which has no predecessor, the node for the most general type
top, which subsumes all other types. Furthermore, there can be any finite
number of minimal types. These are all maximally specific in the sense that
they subsume no other type. Between these extremes lie a finite number of
nonminimal types which cover the set of minimal types. Disregarding
redundant nodes in the graph, the total number of possible types is bounded
by the power set (i.e., the set of all subsets) of the minimal types. The
description of the type system consists of the definition of the relation
‘immediate subtype’, represented by ‘supertype >>
list_of_immediate_subtypes’.

(1) A simple type hierarchy
pers num

1 2 3 sg pl

1sg 1pl 2sg 2pl 3sg 3pl

 pers >> 1, 2, 3.
num >> sg, pl.
1 >> 1sg, 1pl.
2 >> 2sg, 2pl.
3 >> 3sg, 3pl.
sg >> 1sg, 2sg, 3sg.
pl >> 1pl, 2pl, 3pl.

The relation ‚subtype’ is defined with the reflexive transitive
closure of the graph induced by the relation ‚immeditate subtype’; it
consequently consists of every type paired with itself as well as every pair
of types which are connected by a directed path in the graph. Type
unification is the binary operation on types �: T × T → T, where t1 � t2 = t3

is defined when t3 exists as the most general subtype of t1 and t2. The type t3
is called the most general unifier (mgu). In (1) we have1 � pl = 1pl, but sg

� pl is undefined. In contrast to other formalisms (e.g., ALE; cf. Carpenter

& Penn 1999) QType does not require the type system to form a bounded

7

PROOF

complete partial order (bcpo) and thus a semi-lattice. As a consequence,
type unification is nondeterministic, i.e., for a pair of types there can be
more than one most general unifier.

(2) A type hierarchy violating the bcpo condition

 a >> c.
a >> d.
b >> c.
b >> d.

a b

c d
In (2) there is no single most general unifier of a and b, but rather two: c
and d. Our implementation of the type system is based on a bit-vector
encoding of the types (cf. Aït-Kaci et al. 1989, Bernhardt 2001), which
opens an extensional perspective since the bit vector for a given type
represents all the subsumed minimal types that can be regarded as the
extension of that type. All types have bit vectors whose length is identical
with the total number of minimal types, where each minimal type has a
defined position in the vector. In the bit vector of a given type, all the bits
of the subsumed minimal types are set to 1, and all others to 0.
Accordingly, every minimal type has a bit vector in which exactly one bit is
set to 1, whereas for the most general type top all bits are set to 1. In the
case of unary branchings and more complex redundancies in graphs like
examples (1) and (2) this encoding leads to the problem that types can no
longer be distinguished by their bit vectors because the sets of subsumed
minimal types are identical. We solve this problem through the addition of
further, so-called ‘dummy’ types as the following example shows:

(1a) Bit-vector encoding of the type hierarchy in (1)

0111111 1111111

0000011 0001100 0110000 0010101 0101010

0000010 0000100 0001000 0010000 0100000

1000000

0000001

8

PROOF

The type with bit vector 1000000 in (1a) is a dummy type which is
necessary to distinguish the two most general types num and pers. Without
the dummy type these would have identical bit-vector representations since
they would cover the same set of minimal types. It is furthermore necessary
to add an additional dummy type as an immediate subtype of pers to allow
a common supertype of num and pers that has a bit vector distinct from that
of num, but we have avoided this in (1a) for the sake of simplicity. The bit-
vector coding of types permits simple and efficient computation of
operations on types through logical operations on bit vectors.

(3) Let bi be the bit-vector representation of type ti ; then the following
holds:

 (3.1) unification t1 � t2 ⇔ b1 AND b2

 (3.2) generalization t1 � t2 ⇔ b1 OR b2

 (3.3) complement ¬t ⇔ NOT b
 (3.4) subsumption t1 � t2 ⇔ b2 =? (b1 AND b2)

The unification of two types is normally computed with the AND operation
on the corresponding bit vectors, where only the bits remain which are set
to 1 in the same positions of both vectors. This corresponds to the
intersection of the sets of minimal types that constitute the extensions of the
types to be unified. If the intersection is empty, a bit vector results which
contains only zeros, and this is equivalent to failure of unification. For
generalization an OR operation is computed, where all those bits remain
which are set to 1 in a given position in one of the vectors. This
corresponds to the union of the sets of minimal types. The complement of a
type is built simply by switching all the bits: 0 is replaced with 1 and vice
versa. If the result of unifying one type with another is identical to the
second type, then the former subsumes the latter and is more general. The
operator ’=?’ tests the identity of two bit vectors.

It has already been mentioned that unification in the type system of
QType is nondeterministic. Nevertheless, the AND operation always
produces a unique result. From this it follows that the operations on bit
vectors may produce vectors that do not correspond to any defined type of

9

PROOF

the signature. We call such vectors ‘virtual types’ (Bernhardt 2001). They
can be resolved in a disjunction of defined types by identifying the minimal
sets of most general types that cover all the subsumed minimal types. The
same phenomenon appears in the case of the complement, where the same
solution strategy is employed.

2.2.2 Appropriateness conditions

The set of corresponding attribute-value pairs (henceforth ‘AV pairs’), also
called feature-value pairs, for a class of feature structures of a given type is
defined by the partial function ‚Appropriateness’: Types × Attributes →
Types, which is introduced in the QType type signature with the symbol
‘::’.

(4) Description of a class of feature structures and its most general AV-
matrix

:
:

:

agr
num numerus
pers person
gen genus

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 agr :: num:numerus, pers:person, gen:genus.
 numerus >> sg, pl.
 person >> 1st, 2nd, 3rd.
 genus >> masc, fem, neut.

In (4) a class of feature structures of type agr is introduced for
which the three AV pairs are appropriate, e.g., agr × num → num. Possible
combinations give 2×3×3 = 18 different instances for this class, but there
can be classes with an enumerably infinite number of instances:

(5) Description of a class list and an instance of length two

 list >> elist, nelist.
 nelist :: head:top, tail:list. :1

: : 2
:

nelist
head

nelist
tail head

tail elist

⎡ ⎤
⎢ ⎥
⎢ ⎥⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

This recursive definition of the type list allows lists of arbitrary length and
with elements of arbitrary type to be defined, including the type list itself.
The possible instances for this class correspond to at least the set N of

10

PROOF

natural numbers. Thus, the type signature defines a finite number of classes
of feature structures, but these potentially may have indefinitely many
instances.

2.2.3 Inheritance

The AV pairs of a type are inherited by its subtypes, which for their part
may introduce further AV pairs or may sharpen the inherited values. A
specificity hierarchy thus arises in which supertypes subsume their
subtypes. In a framework with monotonic inheritance the AV pairs of
subtypes must be consistent with those which are inherited; otherwise, one
speaks of ‘type clashes’. In QType type clashes are allowed, but (more)
specific information takes precedence over inherited information. This
point will be discussed in §2.7, but first the feature logic of QType in the
context of monotonic inheritance will be introduced.

2.3 Feature logic

A feature logic is a description language for feature structures that has a
syntax and a compositional semantics. It can be used to create instances for
the classes which are defined in the type signature. The feature logic of
QType has the following descriptive elements, where Desc denotes the set
of descriptors:

(6) Syntax of QType’s feature logic

 (6.1) variables Vars ⊂ Desc
 (6.2) types Types ⊂ Desc

 f ∈ Feat, di ∈ Desc:
 (6.3) feature-value pairs f : d ∈ Desc
 (6.4) conjunction d1 & d2 ∈ Desc
 (6.5) disjunction d1 ; d2 ∈ Desc
 (6.6) complement −(d) ∈ Desc
 (6.7) relational constraints @r(d1,…,dn) ∈ Desc

The interpretation of this feature logic is given by a function mgu : Desc →
2FS. Because of disjunction and negation the function returns values from

11

PROOF

the power set 2FS of those feature structures which are possible instances of
the classes defined in the type signature.

(7) Semantics of QType’s feature logic

 v ∈ Vars, t ∈ Types:
 (7.1) mgu(v) = {top}
 (7.2) mgu(t) is given directly by the definition of t in the type
 signature.
 f ∈ Feat, ti ∈ Types, di ∈ Desc:
 (7.3) mgu(f : d) =
 {FS1 | FS1 ∈ mgu(t) where t ∈ lub_pf(f : d)} �Set

 {[f : FS2] | FS2 ∈ mgu(d)}
 (7.4) mgu(d1 & d2) = mgu(d1) �Set mgu(d2)

 (7.5) mgu(d1 ; d2) = mgu(d1) ∪ mgu(d2)

 (7.6) mgu(−v) = ∅

 (7.7) mgu(−t) = max(mgu(ti)) for all ti with t � ti = ∅

 (7.8) mgu((-f) : d) = mgu(f : -d)
 (7.9) mgu(-(f : d)) = mgu(f : -d)
 (7.10) mgu(−(d1 & d2)) = mgu(−d1 ; −d2)

 (7.11) mgu(−(d1 ; d2)) = mgu(−d1 & − d2)
 (7.12) mgu(@r(d1, …,dn)) = mgu(def1(r(d1, …,dn))) ∪ … ∪
 mgu(defm(r(d1, …,dn)))

∪

The interpretation of descriptions consisting of a variable (7.1) gives a set
of feature structures with the special type top as its only element.
Descriptions consisting of a type name give the feature structure of the type
according to its definition in the type hierarchy.

12

PROOF

(8) Interpretation of descriptions consisting of a single type

 :
() =

:
:

agr
num numerus

mgu agr
pers person
gen genus

⎧ ⎫⎡ ⎤
⎪ ⎪⎢ ⎥⎪ ⎪⎢ ⎥⎨ ⎬⎢ ⎥⎪ ⎪⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

Feature-value pairs occur in descriptions as attribute-description pairs,
whose interpretation (7.3) requires that the most general types be
determined for which the pair is appropriate. The latter is achieved with the
function lub-pf (least upper bound for polyfeatures). QType allows
polymorphic features (‘polyfeatures’) such that a given feature can be
appropriate for several disjoint types, possibly with different values. Other
frameworks (e.g., ALE) require unique ‘feature introduction’. The value of
the feature f of the candidates ti that have been found must be compatible
with the description d. This is guaranteed by the operation �Set, which

unifies the feature structures of the resulting set pairwise. Conjunctions of
descriptions (7.4) return for each member of the conjunction a set of feature
structures whose elements must be unified pairwise. Our implementation
uses an incremental strategy for this which—according to our experience—
leads to early failure in cases of inconsistency and thus results in greater
efficiency. The incremental procedure is based on the principle that, for a
series of conjunctions d1 & …& dn each interpretation mgu(di) must be
unified with the unifications of the interpretations (mgu(d1) �Set …) �Set

mgu(di-1), i.e., intermediary results are accumulated and available as
constraints for following computations. Disjunctions of descriptions (7.5)
lead to union of the sets of feature structures given by the interpretations of
the members of the disjunction.

The semantics of negated descriptions must be specified separately
for each kind of description. The negation of a variable (7.6) corresponds to
the complement of top, i.e., the empty set. The negation of a type t (7.7)
consists of the maximal elements with respect to subsumption in the set of
feature structures of all types ti that are inconsistent with t and thus have no
subtype in common with t. In feature-description pairs (7.8, 7.9) the
negation is always shifted to the description. This excludes an interpretation

13

PROOF

according to which, for negated features, the set of all types is given which
do not have this feature. The negation of complex descriptions (7.10, 7.11)
is resolved by shifting the negation inward according to DeMorgan’s laws.
The semantics of relational constraints is the union of the feature structures
corresponding to their definitions, where the definitions are nothing other
than the descriptions just defined in (6) and (7) (cf. §2.8 for a more detailed
discussion).

Aside from the differences in the type system, the interpretation of
descriptions in QType in a way is like that in ALE since most general
unifiers are computed. In CUF (cf. Dörre & Dorna 1993) and ConTroll (cf.
Götz et al. 1997), in contrast, unifiers are computed which always are
minimal types. A nonminimal type accordingly represents the disjunction
of all minimal types that it covers, i.e., the most specific unifiers (msu).
Pollard & Sag (1994) and Penn (2000) call these representations ‘sort
resolved’, where ‘sort’ refers to types. Such differing definitions have grave
consequences for grammar development, as the following example is
intended to show. The interpretation of mgu(agr) results in a set with a
single element (see (8)), whereas the interpretation of msu(agr) results in a
set with 18 elements, because every value of every feature has to be a
minimal type.

(9) Interpretation of types with the function most specific unifier

: : : :
() = , , ,...,

:1 :1 : 2 : 3
: : : :

agr agr agr agr
num sg num pl num sg num pl

msu agr
pers st pers st pers nd pers rd
gen masc gen masc gen masc gen neut

⎧ ⎫⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡
⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢⎨ ⎬⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢⎪ ⎪⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣⎩ ⎭

⎤
⎥
⎥
⎥
⎥
⎦

2.4 Type constraints

The framework presented thus far consists of a type signature and an
interpretation function for descriptions. See Rumpf (forthcoming) for an
implementation of finite-state automata within this framework. Since
variables are not used in the description language for the type signature, it
follows that co-indices are excluded, although they are required for
modelling HPSG schemata and subcategorization in the type signature. To

14

PROOF

solve this problem we extend the type signature with type constraints. The
latter are partial functions Desc → Types for which we use the notation t ::=
d in QType. With type constraints the classes of feature structures defined
in the type signature can be refined to any desired degree and in such a way
that the additional information of a type is inherited by its subtypes.
However, the refinement must remain within bounds set by appropriateness
conditions, i.e., no new feature-value pairs may be introduced.

(10) Simplified grammar fragment modelling the head feature
convention of HPSG

: 1

: :

headed phrase
HEAD

DTRS HEAD DTR HEAD

⎡ ⎤−⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥⎣ ⎦: 1

headed-phrase :: HEAD:sign, DTRS:dtrs.
headed-phrase ::= HEAD:$1 &
DTRS:HEAD-DTR:HEAD:$1.

The symbol ‘$’ in (10) is used to distinguish variable names from types
with the same name. The coindexation is made possible only through the
use of type constraints with which one can use expressions in feature logic
to address constituents embedded at arbitrary depth in feature structures;
this would not be possible with a simple extension of the description
language for type signatures with variables. Type constraints are
comparable to implicational constraints like those in ConTroll (cf. Götz et
al. 1997) but slightly weaker since the left-hand side of implicational
constraints consists of arbitrary descriptions and every feature structure
subsumed by it must be consistent with the arbitrary description on the
right-hand side of the implicational constraint. Furthermore, type
constraints provide a new means for representing nondeterminism since
expressions in feature logic may contain disjunction and negation. Cyclic
feature structures can be defined as well.

15

PROOF

2.5 Relational constraints

Relational constraints (RCs) extend a constraint-based grammar-
development environment with a general constraint-logic programming
(CLP) language for typed feature structures. In other frameworks RCs are
also called definite clauses (ALE, cf. Carpenter & Penn 1999) or sorts
(CUF, cf. Dörre & Dorna 1993). An RC r(d1,…,dn) ∈ Desc is a relation r
over feature-logic descriptions d1,…,dn which, like all descriptions, are
mapped onto the set 2FS. In contrast to other descriptive elements of our
feature logic which refer exclusively to classes defined in the type
signature, RCs are defined outside the type signature (although they
conform to it) and thus constitute an independent system in which further
inheritance relations can be defined. So one must distinguish between the
definition and the use of a relational constraint as a feature-logic
expression, where they are preceded by the symbol ‘@’ to distinguish them
from types with the same name. The syntax for definitions of RCs appears
as follows:

(11) Syntax of relational constraint definitions

r(d1,…,dn) #> d0. with di ∈ Descr, r ∈ String, n ≥ 0

There can be more than one definition for a relation r with arity n, and
these definitions are then interpreted disjunctively (see (7.12)). The
practical use of the parameters d1,…,dn is manifold. They can trigger the
matching of a specific constraint definition and transport information
between a feature-logic expression, where the constraint appears, and its
definition.

A subset of the RCs is comparable with the templates of PATR-II
(cf. Shieber 1986), which may be regarded as abbreviations for complex
feature structures. Since templates can themselves be used in the definition
of templates, they provide a means — indeed, in the case of PATR-II the
only means — of defining inheritance hierarchies. (12) shows the
translation into QType of an example from Shieber (1986: 57):

16

PROOF

(12) Relational constraints defined as templates

 verb #> cat:v.
 finite #> @verb & head:form:finite.

The constraint finite is defined with the constraint verb. In contrast to
PATR-II templates, RCs can be parametrized with descriptions. Coupled
with recursive data structures like lists, they thereby achieve a status that
goes far beyond the abbreviatory character of templates. A constraint-logic
programming language arises which is comparable with „Pure Prolog“ and
with which programs involving infinite sets of feature structures can be
defined, e.g., in order to implement Turing machines. This does not mean
that relational constraints are essential in order to implement Turing
machines with feature structures; they just make it simpler. Keller (1993)
describes how „Negated Regular Rounds-Kasper Logic“ (NRRK Logic)
can be used as an extension of PATR-II to do the latter. NRRK Logic is an
extension of Rounds-Kasper Logic (Kasper & Rounds 1986), one of the
first studies to provide a feature logic for untyped feature structures with a
denotational semantics. Johnson (1988) shows an implementation of Turing
machines with unary syntax rules as state transitions and lists as tapes.
Nevertheless, relational constraints can be used to define arbitrary relations
over lists:

(13) A relational constraint defined for lists of arbitrary length

 append(elist, $L) #> $L.
 append((first:$H & rest:$T), $L) #>
 first:$H & rest:@append($T, $L).

Recall that ‘$’ distinguishes variables from other descriptions. The
interpretation of the description append($Prefix, $Suffix) & first:1 & rest:
(first:2 & rest: (first:3 & rest:elist)) produces the disjunction of all
decompositions of the list <1, 2, 3> into prefixes and suffixes as instances
of the parameters $Prefix and $Suffix. Type constraints can be used to
embed RCs in the inheritance hierarchy of the type signature, e.g., in order
to permit constraint-based parsing as the following example shows:

17

PROOF

(14) A type constraint using a relational constraint

sign >> phrasal_sign, lexical_sign :: phon:phonlist.
 phrasal_sign >> left:phonlist & right:phonlist.
 phrasal_sign ::= phon:@append($L, $R) & left:$L & right:$R.

The type phrasal_sign is treated here as a binary tree, where the type
constraint phrasal_sign ensures that the value of the feature phon is always
the concatenation of the values of the features left and right. Since
undirected constraint-based parsing cannot compete for efficiency with
established parsing strategies, QType provides the possibility of specifying
a grammar with context-free syntax rules and a lexicon, which can then be
processed using a left-corner parser with linking.

2.6 Phrase-structure rules and lexical entries

As mentioned above, the phrase-structure rules and lexical entries of
QType are provided to allow for efficient parsing. Phrase-structure rules are
written as context-free phrase-structure rules which define sets of trees
whose nodes are associated with feature structures.

(15) Syntax of phrase-structure rules in QType

d0 => d1 ^ … ^ dn. with di ∈ Descr

The symbol ‚=>’ denotes immediate dominance of the mother node d0 over
the daughter nodes d1 ^ … ^ dn, while ‚^’ denotes concatenation and
therefore linear precedence among the daughters. Since the rules are
processed using a left-corner parser with linking (cf. Covington 1993), left-
recursive rules do not present a problem. The linking relation is computed
automatically during compilation of the grammar. The following example
shows the adaptation of a phrase-structure rule for sentences S → NP VP
from Shieber (1986: 25):

(16) A phrase-structure rule for main clauses in QType and the
corresponding syntax tree

s & HEAD:$H => np & $NP ^
 vp & HEAD:($H & SUBJECT:$NP & FORM:finite).

: 1

s

HEAD

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

2 np :
: 1

: 2

vp
FORM finite

HEAD
SUBJECT

⎡ ⎤
⎢ ⎥⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

18

PROOF

The Head-Feature Principle of HPSG (cf. Pollard & Sag 1987, 1994) has
been explicitly stated in the rule here. The application of rules follows the
left-corner alogrithm: starting with a top-down prediction, a bottom-up step
involving lexical access is triggered by a linking relation that determines
which constituents are useful beginnings of a phrase dominated by the top-
down prediction. So, parsing involves matching the strings of lexical items
and unification of the feature structures at the nodes of trees that are
adjoined.
We decided to distinguish syntax rules and lexical entries to make the
parser more efficient and to facilitate the application of lexical rules to
lexical entries. The format for lexical entries pairs strings with descriptions
of feature structures and appears as follows:

(17) Syntax of lexical entries in QType

s -> d. where s ∈ String, d ∈ Descr

Two concrete examples of lexical entries are given here:

(18) Two lexical entries and a relational constraint used as a template

man -> cnoun.
 sleep -> @vbase.
 vbase #> v & HEAD:FORM:base.

The word man has the type cnoun for common nouns in its description,
while the description of the word sleep contains a relational constraint
which functions here as an abbreviatory template and specifies the type v as
well as the value base for the feature path HEAD:FORM. In order to take
advantage of the power of inheritance in the type signature, good practice
would be to define almost all information of lexical classes down to
specific lexical entries in the type signature. This would lead to lexical
entries in the format (17) that pair a string with a single type.

A further device in QType consists of lexical rules, which we have
incorporated merely for historical reasons, since they can be eliminated
with suitable techniques (cf. Bouma et al. 2000). They facilitate a compact
description of the lexicon and define binary relations between lexical
entries by generating new lexical entries as output from previously-defined
entries as input to cover lexical processes like inflection and derivation.
The generation process involves asymmetric nonmonotonic unification to

19

PROOF

copy all parts of the input into the output that are compatible with the
output specification of the lexical rule. See Bricoe & Copestake (1999) for
a general survey and Rumpf (forthcoming) for a detailed description of the
implementation of lexical rules in QType.

2.7 Nonmonotonic inheritance

There are two reasons for employing nonmontonic inheritance of
information in object hierarchies: on the one hand it helps to avoid
redundancy and thus to achieve more compact representations; on the other
hand it provides a way to model rule exceptions explicitly. Precisely the
last point can be a decisive criterion for the adaquacy of a theory, but with
monotonic means it remains elusive. Although the majority of linguists
working within the framework of constraint-based methods have
emphasized the advantages of monotonicity, approaches involving
nonmonotonic processing of feature structures have a long tradition. Most
previous attempts to integrate nonmonotonicity into constraint-based
approaches use variants of nonmonotonic unification (e.g., Bouma 1990,
Carpenter 1993), which is neither associative nor commutative, however.
This leads to serious problems for the semantics of constraint-based
frameworks since they thereby cease to be declarative. With YADU
Lascarides & Copestake (1999) present a variant of default unification
whose result is independent of the order of the computations and which
therefore preserves the declarative character of the formalism. For this gain
they pay a high price, however: so-called ‘tails’ store the history of
unifications, and the computation of symmetric unifications is factorial in
the worst case (Carpenter 1993) and thus may be intractable. We therefore
propose an alternative which preserves declarativity in the framework of
QType but is also tractable: nonmonotonic inheritance in the type signature.
The basic idea is to allow conflicting information in type signatures;
conflicts in the top-down inheritance are then resolved according to the
principle that more specific information has precedence, whereby the
subtype relation is suspended. A default hierarchy can be converted offline
into a corresponding monotonic hierarchy so that only the monotonic
hierarchy is needed at runtime.

20

PROOF

(19) Conversion of a nonmonotonic to a monotonic hierarchy

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡
+

1:

1:

1:

PASSP

PASTP

edPAST
verb

⎥⎦
⎤

⎢⎣
⎡

+
−−

tPAST
verbtpst

:

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

1:

1:

1:
/

PASSP

PASTP

PAST
verbtpstverb

⎥⎦
⎤

⎢⎣
⎡

+edPAST
verb

: ⎥⎦
⎤

⎢⎣
⎡

+
−−

tPAST
verbtpst

:

−−

In (19) we see an example involving verb inflection in English (cf.
Lascarides & Copestake 1999). Regular verbs like push have the ending
+ed in the forms for past, past participle, and passive participle.
Exceptionally, a group of verbs like burn has the ending +t for all three
forms. In the nonmonotonic link shown to the left of the arrow, the type
pst-t-verb inherits the structure sharing of the type verb, and the inheritance
of +ed is blocked. The nonmonotonic inheritance can be converted to
monotonic inheritance by computing the generalization of the types verb
and pst-t-verb, which produces the abstract type verb/pst-t-verb. The latter
inherits the compatible information from verb and pst-t-verb
monotonically.

As the example clearly shows, the default relation between verb
und pst-t-verb is lost since the types are disjoint and equally specific. In our
system, however, a default connection can be reconstructed by referring
back to the nonmonotonic inheritance hierarchy. For this purpose a
mapping relation between the types of the two signatures is computed, with
the help of which reference is made only to the nonmonotonic signature in
output. Accordingly, a user of QType does not even notice that the
computation takes place with a signature containing types that he has not
defined.

Although the example just presented involves structure sharing, it
still assumes a simplified scenario since only local conflicts at the level of

21

PROOF

the relation ‘immediate subtype’ need to be solved, whereas in general
conflicts occur within the transitive closure of this relation. The supertype
t0, which introduces a feature-value pair into the hierarchy via an
appropriateness specification, and the subtype tn containing a conflicting
value may be arbitrarily far apart. All conflict-free types ti along the path to
t0 should, of course, remain in the monotonic inheritance relation to the
supertype t0. This requires unfolding the signature at t0 by inserting a
common immediate supertype t0-tn for t0 and tn which represents their
generalization. However, this also suspends the inheritance relation
between ti and tn, which is unacceptable since the types ti can introduce
additional feature-value pairs which are inherited by tn. Consequently, a
complete procedure must also compute the generalizations of all ti with tn
and insert the corresponding supertypes ti-tn. This raises the question of
where all the new inserted types should be attached. Clearly, t0-tn must be
an upper bound for the new generalizations.

The procedure just described is always applied to a single conflict;
in order to resolve several conflicts it must be iterated until all the conflicts
are removed. It remains to be seen whether the order of conflict resolution
leads to different monotonic signatures and whether a strategy can be found
that is most efficient.

(20) The Nixon diamond

:
PERSON
human yes
⎡ ⎤
⎢ ⎥
⎣ ⎦

:
QUAKER
pacifist:

REPUBLICAN
pacifist yes

⎡ ⎤
⎢ ⎥
⎣ ⎦no

⎡ ⎤
⎢ ⎥
⎣ ⎦

:
NIXON
pacifist ?
⎡ ⎤
⎢ ⎥
⎣ ⎦

22

PROOF

We see no plausible solution for conflicts arising from multiple inheritance.
The Nixon diamond (cf. Touretsky 1986) represents such a scenario: The
type nixon immediately inherits the property pacifist:yes from quaker as
well as pacifist:no from republican. Which property has precedence can
only be decided with the help of a given specificity weighting. We are
inclined to reject solutions with nixon as a nondeterministic type. The
procedure is nevertheless applicable to signatures with multiple inheritance,
but conflicts may arise in the way just described; otherwise, due arbitrarily
to the order of computation, the value would survive which is computed
last. Signatures are consequently tested for such inconsistencies before the
procedure is applied.

A further problem involves embedded structures. In the previous
examples, all values occurred at the same depth, which in general is a gross
simplification of the possibilities, unless one first considers type signatures
without type constraints. Here the situation is in fact relatively simple since
the appropriateness specifications always have the same basic form Types ×
Attributes → Types and, thus, neither embedded nor shared structures can
be addressed. Besides these extensions, type constraints also introduce
disjunction and relational constraints, however. QType requires type
constraints to be locally consistent, i.e. no type constraint may conflict with
the type for which it is defined. On the other hand, the information
introduced by type constraints is inherited by all subtypes. Since the
conversion of nonmonotonic signatures into monotonic ones takes place
offline, the type constraints should also be computed offline so that
conflicts introduced by them arising through inheritance may be taken into
account. Unfortunately, this is not always possible since there is a class of
relational constraints that cannot be computed offline, namely, recursive
relational constraints, which are defined for partial data structures like lists
of indefinite length. In such cases the solution set is nonfinite, so we have
chosen partial evalutation (cf. Pereira & Shieber 1987) of type constraints
as a remedy: whenever possible, the computation is carried out offline, but
it is delayed till runtime for recursive relational constraints. As a
consequence, no conflicts may be introduced into the hierarchy through
recursive relational constraints in connection with type constraints, since
they can be resolved neither offline nor during parsing. In practice we are
aware of no cases where this is important.

The model of nonmonotonic inheritance presented here is
significantly more restrictive than that suggested by Lascarides &

23

PROOF

Copestake (1999). Nevertheless, we believe that it entails no essential
limitations on the specification of default relations in grammar
development. In the following section, we present a method by which type
hierarchies of the kind we have discussed can be induced automatically
using Formal Concept Analysis.

24

PROOF

3 Induction of inheritance hierarchies

3.1 General remarks

Technical progress in recent decades has led to an enormous growth in the
quantity of data that can be obtained through corpus-based empirical
studies. It is no longer possible to evaluate such data manually for the
construction of lexica in the form required by modern grammar formalisms.
The use of automatic methods is therefore unavoidable.

In principle there are two different approaches for obtaining
appropriate inheritance-based lexica from collected linguistic data on words
and their properties:

Incremental and dynamic procedures imitate human behavior
(cf., e.g., Barg 1996). A relatively small data set is used to
produce an initial inheritance hierarchy, which then, on the basis
of additional data, is refined. A ‘pruning’ at all intermediate
stages ensures that the resulting hierarchy is not too detailed. The
ultimate result is a compact representation of the complete data
set in an inheritance hierarchy which depends to a great degree,
however, on the initial data, the order of the subsequently
processed data, and the pruning algorithm employed. With this
procedure it normally is only possible to obtain results that are
locally optimal.

The alternative procedure is to obtain a single hierarchy in one step; this
hierarchy logically corresponds to the data in a defined form and may be
extremely large. In a second step it can be reduced to an acceptable size
through statistical or semi-automatic pruning. The disadvantage of this
procedure is that the insertion of new words constitutes an independent
problem, the solution of which is not given directly by the induction
procedure.

The method presented here, based on Formal Concept Analysis,
although belonging to the second group of approaches, results however in
hierarchies which are so detailed that new, unknown words normally can
directly inherit appropriate information from a node already present in the
hierarchy. If such a node does not exist, the new, extended hierarchy can be
computed from the current one without starting over again from scratch.

25

PROOF

3.2 Formal Concept Analysis

Formal Concept Analysis (FCA) is a mathematical theory that models the
notion of the ‘concept’ set theoretically and that orders concepts in concept
lattices (cf. Ganter & Wille 1999). These concept lattices can be regarded
as inheritance hierarchies. Ganter & Wille (1998) characterize FCA as
follows:

The sophisticated name of Formal Concept Analysis needs to be
explained. The method is mainly used for the analysis of data, i.e.
for investigating and processing explicitly given information.
Such data will be structured into units which are formal
abstractions of concepts of human thought allowing meaningful
and comprehensible interpretation. We use the prefix formal to
emphasize that these formal concepts are mathematical entities
and must not be identified with concepts of the mind. The same
prefix indicates that the basic data format, that of a formal
context, is merely a formalization that encodes only a small
portion of what is usually referred to as a context.

3.2.1 Formal contexts

In order to be analyzed with FCA, data must be structured as a
formal context. A formal context (FC) is a triple (G,M,I) consisting of a set
of objects G, a set of attributes M, and a binary incidence relation I ⊆

G×M between the two sets. If an object g is in a relation I with an attribute

m, we write (g,m) ∈ I, and read it as “the object g has the attribute m”. A
formal context can — at least in finite cases — be represented in a table
like that in (21).

26

PROOF

(21) Example of a formal context1

Since “lexical entries have evolved from simple pairings of
phonological forms with grammatical categories into elaborate information
structures, in which phonological forms are now paired with more
articulated feature structure descriptions” (Sag &Wasow 1999: 173), data
must be collected in empirical studies that fill these feature-structure
descriptions. Such data build ternary relations between phonological forms,
attributes, and values of the attributes. The data must be put in the form of a
suitable FC, i.e. a binary relation, through the choice of a suitable scaling
for each many-valued attribute. It often is enough just to regard each
attribute-value pair as an independent attribute, as has been done in (21).
This transformation process is called “scaling with the nominal scale”.
Sometimes, however, e.g., in the analysis of subject-verb agreement in
English, a more differentiated scaling is better suited. (22a) shows a small
example of data about English inflected verb forms. In order to permit
explicit reference to non-third values the scale in (22b) can be chosen,

1 The context covers the inflectional paradigms and the gender

information of the following seven German nouns: Herr ‘mister’, Friede ‘peace’,
Staat ‘state’, Hemd ‘shirt’, Farbe ‘color’, Onkel ‘uncle’, Ufer ‘bank/shore’. In the
attribute names ‘*’ stands for the stem of the noun.

27

PROOF

which introduces the values local and nonlocal, to refer to the status of the
subject. The resulting formal context is shown in (22c). The choice of
suitable scales is normally not a problem in linguistic contexts since only
discrete values appear; these can always be scaled without information loss
using the nominal scale.

(22) Possible scaling of the attribute PERS

 (a) (b) (c)

3.2.2 Formal concepts

In FCA concepts are conceived in terms of sets as in the classical
definition of concepts. They are defined through their extension as well as
their intension. A formal concept of a context is thus a pair consisting of a
set of objects, its extent, and a set of attributes, its intent. The extent
consists exactly of the objects in the context for which all the attributes of
the intent apply; the intent consists correspondingly of all attributes of the
context which the objects from the extent have in common. In order to
formally express the strong connection between the extent and the intent of
a formal concept given by the binary relation I, two derivational operators
are defined between the set of objects G and the attribute set M of a formal
context: If A ⊆ G is a set of objects, then the set of the common attributes
of A is

A' := {m∈M | ∀g∈A: (g,m)∈I},

28

PROOF

and if, analogously, B ⊆ M is a set of attributes, then the set of objects that
have B in common is

B' := {g∈G | ∀m∈B: (g,m)∈I)}.

A formal concept is thus a pair (A,B) with A ⊆ G, B ⊆ M where A = B'
and B = A'. Furthermore, the definition of the derivational operators
guarantees that (A'',A') is a formal concept for any set of objects A ⊆ G and

(B',B'') is a formal concept for any set of attributes B ⊆ M.2 Formal
concepts from (21) are, e.g.,

({Staat, Farbe}' ' , {Staat, Farbe}') = ({Hemd, Staat, Farbe},{sing
nom:*, sing dat:*, sing acc:*, plur nom:*_n, plur gen:*_n, plur dat:*_n,

plur acc:*_n}),
and

({sing acc:*}', {sing acc:*}'') = ({Ufer, Onkel, Hemd, Staat, Farbe},{sing
nom:*, sing dat:*, sing acc:*, plur dat:*_n}).

3.2.3 Concept lattices

The subconcept-superconcept relation on the set of all formal concepts of a
context defines a partial order: (A1,B1)≤(A2,B2) ⇔ A1⊆A2 ⇔ B1⊇B2. This
order relation corresponds to our intuitive notion of super- and
subconcepts. Superconcepts are more general, encompass more objects, and
are characterized by fewer attributes. It can be shown that the set of all
formal concepts of a formal context ordered with respect to the subconcept-
superconcept relation constitutes a complete lattice, which is called the
concept lattice of the formal context.3 (23) shows the concept lattice
corresponding to the formal context in (21).

 Concept lattices are normally represented by Hasse diagrams as in
(23). Superconcepts are located above subconcepts and are a linked to them

2 A detailed introduction of Formal Concept Analysis is given by Ganter

& Wille (1999).

3 Furthermore, the Basic Theorem on Concept Lattices states that every
complete lattice is the concept lattice of a formal context.

29

PROOF

by a path. The definition of a concept lattice allows an especially
economical labelling: instead of labelling every concept with its complete
extent and intent, only the object and attribute concepts are labelled. The
object concept γg of an object g is the smallest concept whose extent
includes g, i.e. γg = (g'',g'). The attribute concept µm of an attribute m is
analogously the largest concept whose intent includes m, i.e. µm =
(m',m'').4 In this way a concept lattice becomes an inheritance hierarchy:
Any concept of the lattice inherits all objects which are labelled with
subconcepts as its extent, and it inherits all attributes with which
superconcepts are labelled as its intent. Inheritance hierarchies based on
concept lattices are completely nonredundant, i.e. each attribute and each
object appears exactly once in the hierarchy.

Concept lattices visualize structural connections between the data
of a flat data list. Ganter & Wille (1998) stress: “It is our belief that the
potential of Formal Concept Analysis as a branch of Applied Mathematics
is just beginning to show. A typical task that concept lattices are useful for
is to unfold given data, making their conceptual structure visible and
accessible, in order to find patterns, regularities, exceptions, etc.”

4 For example, the attribute concept of the attribute sing acc:* from (21)
is ({sing acc:*}', {sing acc:*}'') = ({Ufer, Onkel, Hemd, Staat, Farbe},{sing
nom:*, sing dat:*, sing acc:*, plur dat:*_n}).

30

PROOF

(23) Concept lattice from the context in (21)

3.2.4 Complete theories and concept lattices

The mutual dependencies between the data of a context can also be shown
in another way, namely, with a complete theory that describes the data.
Such a complete theory is a set of clauses over the attributes of the context
which are compatible with the data of the context and from which all the
compatible clauses can be derived.

The clauses are of the form ∀x∈G : φ→ψ, where the set of

attributes are treated as one-place atomic predicates and φ and ψ are terms

built inductively from ∧ and ∨ and the atomic predicates.5 Quantors and
predicates no longer need to be specified explicitly; instead, we write
PERS:first → PERS:nonthird rather than ∀x : PERS:first(x) →
PERS:nonthird(x).

5 Standard transformations can be used to show that a negation operator

would introduce no additional expressivity.

31

PROOF

As has been shown in Osswald & Petersen (2003), it frequently
makes sense to restrict the form of clauses, e.g. by dispensing with the
disjunctive or conjunctive operators. Three principal classes of complete
theories result: theories with neither disjunctive nor conjunctive operators
are termed simple inheritance theories, theories without disjunctive
operators are Horn theories, general theories without restrictions are termed
observational theories (for a thorough discussion see Osswald & Petersen
2002 and Osswald & Petersen 2003).

Every theory determines a hierarchical classification, the
information domain of the theory. Its classes are the attribute sets
maximally consistent with the theory and are ordered by the subset relation.
The set of intents of all formal concepts of a context ordered by the subset
relation correspond precisely to the information domain of a complete Horn
theory of the context. Due to the convention in FCA we call Horn clauses
(attribute) implications. The implications can be read off directly from the
concept lattice: An implication m1 ∧ m2 ∧...∧ mk → m holds exactly when
the greatest lower bound of the attribute concepts µm1,... ,µmk is a
subconcept of the attribute concept µm. Hence, the implication sing dat:* ∧

gender: masc → sing gen:*_s holds in (21), since in (23), the greatest
lower bound of the nodes labelled with sing dat:* and gender: masc is a
lower neighbor of the node labelled with sing gen:*_s. Since the union of
every premise and the maximal corresponding conclusion forms an intent
of one of the concepts of the context, the structure of the concept lattice is
determined by the set of valid attribute implications up to isomorphism.

FCA thus occupies an intermediate position with respect to the
complexity of the underlying theories. In the following section we will
show that precisely this intermediate position makes FCA an outstanding
tool for the induction of lexical hierarchies. More complex theories (those
with disjunctive operators) tend to overfit, the induced hierarchies are too
flat, and overgeneralizations are made. On the other hand, simpler theories
(those without conjunctive operators) fail to capture some interesting
linguistic generalizations, which can be seen from the fact that many
linguistic formalisms include implications with conjunctions.

It is noteworthy that many linguistic formalisms can be situated in
this intermediate position. For example, feature-structure descriptions in the
framework of HPSG are based on conjunction, whereas, e.g., the semantics
of disjunction of types is a widely discussed problem.

32

PROOF

3.3 Examples using FCA
3.3.1 Strategies for avoiding redundancy in the lexicon: feature co-

occurrence restrictions in GPSG versus hierarchical type signatures
in HPSG

Lexicalist linguistic theories encode a great deal of grammatical
information in the lexicon and employ various strategies in order to avoid
unnecessary redundancy. This section will introduce two of these strategies
and show how FCA can be used to translate lexica built according to one
strategy into corresponding ones for another.

GPSG uses so-called feature co-occurrence restrictions (FCRs) to
restrict the distribution of features and their values. A pair consisting of a
feature and a feature value is called a feature specification. Whereas GPSG
features are atomic symbols, feature values are either atomic symbols or
categories,6 i.e., set of feature specifications (cf. Gazdar et al. 1985: 22).
The FCRs are part of a grammatical theory and restrict the set of possible
categories and their extensions in the theory. A typical FCR is [+INV] ⊃

[+AUX, FIN], which is [<INV,+>] ⊃ [<AUX,+>, <VFORM, FIN >] when
written out fully.7 The condition stated here is that in English the feature
specification <INV,+> implies <AUX,+> and <VFORM:FIN >: if a verb
occurs initially in a sentence containing a subject, then this verb must be a
finite auxiliary.

As noted above, HPSG adopts no obvious counterpart for the FCRs
of GPSG and instead employs inheritance hierarchies, whose informational
domain consists of typed feature structures. HPSG further reduces
redundancy by ordering the types in a type hierarchy, the so-called type
signature, in which appropriateness conditions are inherited (for more
details see §2).

6 Categories of GPSG correspond to the untyped features structures of

other unification-based formalisms.

7 The feature specification <INV,+> marks sentence-initial verbs,
<AUX,+> marks auxiliary verbs and <VFORM, FIN> specifies, that the verb is
finite.

33

PROOF

HPSG thus replaced the FCRs of GPSG with inheritance
hierarchies of types, but the relations between these formal devices were
not well understood. With FCA a general framework is now available
which allows the equivalence of the devices to be explained in a transparent
and declarative fashion.

The main idea for showing the convertability of FCRs and type
signatures is to construct a suitable formal context in order to employ the
methods of FCA. (24) shows a lexical fragment consisting of 10 lexemes
classified with respect to some of the features proposed in Gazdar et al.
(1985). The chosen features are exactly those which play a role in the first 4
FCRs given in Gazdar et al. (1985); these FCRs regulate the distribution of
the features v, n, vform, nform, pform, inv, aux, and their values (see (25)).8
(24) is formed by taking each feature-value pair as an independent attribute
of the context. GPSG also allows FCRs of the form [VFORM] ⊃ [+V, -N]
(see FCR 2), which encode not only restrictions on feature-value pairs but
also on the admissibility of certain features in the first place. Because of
this, further attributes of the form feature:VAL have been added in (24),
where such an attribute applies to a word if there is some value value such
that feature:value is an feature specification of the word. Feature structures
with embedded structures can be represented in a formal context by
flattening them and viewing the path-value pairs as attributes (cf. Sporleder
2003; Petersen 2004b, Petersen forthcoming). We call such a formal
context obtained from feature structures a feature structures context.

8 The feature vform distinguishes parts of the verb paradigm (bse, base-

form; fin, finite; pas, passive participle) and nform analogously distinguishes the
special expletive pronoun it from normal nouns (norm).

34

PROOF

(24) Lexemes classified with respect to their feature specifications in
Gazdar et al. (1985)

(25) The first 4 FCRs from Gazdar et al. (1985)

35

PROOF

(26) The concept lattice for the feature structure context of (24), which can
be regarded as a type signature9

To illustrate the relationship between FCRs and type signatures we
will proceed as follows: First we show how a type signature can be derived
from a feature structure context, and then we do the same for a system of
FCRs. Finally, we demonstrate how a feature structure context can be
constructed from either a type signature or a set of FCRs.10

9 This figure was created using the program ConExp

(http://www.sourceforge.net/projects/conexp).

10 A detailed description of our approach can be found in Petersen &
Kilbury (2005).

36

PROOF

(26) shows the concept lattice for the feature structure context in
(24), which can be directly interpreted as a type signature of HPSG if a
unique type is assigned to each node of the lattice. The feature labels then
encode the appropriateness conditions associated with each type, and the
subconcept relation corresponds to the subtype relation in the type
signature. Only the lowest node of the concept lattice has no direct
counterpart in the type signature; it expresses the failure of unification and
often is represented with ⊥, the symbol for bottom. If one reads the
hierarchy in (26) as a type signature it is apparent that the hierarchy makes
extensive use of multiple inheritance, which is possible to only a limited
degree in some varieties of HPSG. Due to the definition of formal concepts,
however, it can never be the case that a type inherits incompatible
information from its upper neighbors.11

The hierarchy in (26) encodes so much information about the
distribution of atomic values that it is sufficient to pair phonological forms
with types in the lexicon in order to obtain adequate feature structures. For
realistic lexica such a procedure leads to enormous type signatures since
every lexical feature structure must have its own type. Moreover, it
conflicts with the idea of types when they, e.g. in the case of with, cover
only a single object. On this issue Pollard & Sag (1987: 192) write:

[...] lexical information is organized on the basis of relatively few
— perhaps several dozen — word types arranged in cross-cutting
hierarchies which serve to classify all words on the basis of
shared syntactic, semantic, and morphological properties. By
factoring out information about words which can be predicted
from their membership in types (whose properties can be stated
in a single place once and for all), the amount of idiosyncratic
information that needs to be stipulated in individual lexical signs
is dramatically reduced.

Consequently, type signatures are frequently constructed in such a way that
they primarily encode information about the general structure of feature
structures. This is accomplished with appropriateness conditions which
regulate the distribution of the feature, but restrict their values only to

11 The principle of unique feature introduction is never violated because

the features are introduced on their own, unique feature concepts.

37

PROOF

general types. (27) shows such a type signature which was generated with
our system FCALING. The restricted distribution of the atomic values from
the FCRs in (25) can be enforced with the introduction of additional type
constraints.

(27) A typical type signature for the data in (24)

The data of our example are rather atypical for an HPSG analysis
since they are based on feature structures containing paths with no more
than one feature. In the following we show that FCA is able to induce type
signatures from sets of more deeply embedded feature structures of the sort
shown in (28).

(28) A small example lexicon with untyped feature structures from Shieber
(1986)

38

PROOF

A module of our system FCALING computes such inductions
(details are given in Petersen 2004b, Petersen forthcoming). The following
approach was chosen for the implementation: In an initial step the feature
structures are translated into a feature structure context; in the course of this
translation all atomic values are replaced by the marker ‘av_’, however. In
addition to the large matrix feature structures we also take all the embedded
structures and encode them in the same feature structure context. In a
procedure reverse to that of Penn’s unfolding (see above) this concept
lattice is then folded, which results in a type signature that encompasses all
structural aspects of the feature structures. Finally, information about the
atomic values is added and the appropriateness conditions are sharpened
correspondingly. When applied to the data in (28) the type signature of
(29)12 results. Type signatures induced with FCALING can be used directly
as a starting point for developing grammars in QType (see §2).

(29) Type signature induced from the untyped feature structures in (28)

Sporleder (2003) proposes another approach for the induction of
type signatures. Here a lattice like that of (26) is defined as the search space
for an induction task. A maximum entropy model is applied to this lattice
which classifies nodes into plausible and implausible generalizations. This
maximum entropy model is the result of a machine learning process which
was trained on plausible manually constructed hierarchies.

12 The graphic output was realized with the help of the program GraphViz

(http://www.graphviz.org/).

39

http://www.graphviz.org/

PROOF

Having constructed type signatures from formal concept lattices,
we will now show how to derive FCRs from a feature structure context as
given in Table (24). The FCRs of GPSG are nothing other than
implications that are compatible with the data of Table (24). In order to
restrict the set of admissible categories sufficiently, the FCRs must reflect
the mutual dependencies between the data of the context. Hence, the data of
the context must respect the FCRs and the object concepts of the context
must be derivable from the FCRs. The latter ensures that the FCRs license
no feature structure with features which do not co-occur in the input
structures.

(30) shows a basis of the complete Horn theory of (24);13 some
abbreviations have been used: A ↔ B denotes the two implications A → B
and B → A and ⊥ is the (inconsistent) set of all attributes of the context in
(24). Because of the eqivalence (A → C)∧(B → C) ⇔ A∨B → C, we
summarize implications with equal conclusions in one clause (e.g. clause
17).

If one compares the implications in (30) with the corresponding
FCRs from Gazdar et al. (1985) in (25), it is apparent that all FCRs can be
derived from the implications in the basis of the Horn theory: FCR 1
corresponds to implication 8; FCR 2 is contained in equivalence 5, FCR 3
in equivalence 4, and FCR 4 in equivalence 2.

(30) Horn theory for the feature structure context in (24)

13 Minimal bases of complete Horn theories for formal contexts can be

automatically calculated with the help of the program ConImp
(http://www.mathematik.tu-darmstadt.de/ags/ag1/Software/DOSProgramme/
Welcome_de.html).

40

PROOF

However, (30) includes further implications, some of which bear
no real information in the sense of GPSG since they either result from the
sparse input data (cf. equivalence 3), from the special role of the feature
value VAL (cf. implications 12–16), or from the fact that no knowledge
about the exclusivity of features is implemented in FCA (cf. implication
17). Implication 9 follows from FCR 1 on the condition that, first,
whenever inv is specified then aux is also specified and vice versa
(implication 7) and, second, inv is restricted to the values + and -;
implication 11 follows analogously from FCR 1.

The implications 1, 6, and 7 are missing in the FCRs and moreover
only one direction of the equivalences 2, 4, and 5 is stated in the FCRs.
These implications regulate when categories necessarily must be specified
with respect to certain features without saying anything about the concrete
feature values. A surprising gap in the list of FCRs is evident in implication
10, according to which passive verbs are not auxiliaries. This fact cannot be
derived from the FCRs in (25). The GPSG grammar given in Gazdar et al.
(1985) thus allows the feature-specification bundle {[PAS], [+AUX], [-
INV]}, which encodes a non-inverted auxiliary in passive. This
demonstrates that the automatically extracted complete Horn theory is more
explicit than the manually formulated FCRs, which arise from linguistic
intuition and miss statements which were probably too obvious for the
investigators. Hence, FCA can be a powerful tool for tracking down gaps in
theories that experts have constructed manually.

However, the FCRs of GPSG are not restricted to attribute
implications (Horn clauses). Some of the FCRs in Gazdar et al. (1985:
246), make use of negation and disjunction. The following consideration
shows that such FCRs are implicitly encoded in the concept lattice, too. As
we saw before, a clause with a disjunctive premise and conjunctive
conclusion can be directly transformed into a set of attribute implications.
Hence, we can focus on the derivation of clauses with disjunctive
conclusions from concept lattices. The information domain of a complete
observational theory of a formal context consists exactly of the intents of
the object concepts. These considerations open a way to derive a complete
observational theory and hence a complete set of FCRs from a concept
lattice:

Each formal concept (A,B) of the lattice which is not an object
concept corresponds to an observational statement whose premise is the

41

PROOF

conjunction of the elements of the intent B and whose conclusion is the
disjunction of the conjunctions of its subconcept intents minus B. Adding
the corresponding statement of a concept to the theory amounts to
removing the concept intent from the informational domain of the theory.
For example, the statement corresponding to the attribute concept of
nform:val is

n:VAL ∧ v:VAL ∧ v:- ∧ n:+ ∧ nform:VAL →
nform:norm ∨ nform:it

which can be simplified by (30) to

nform:VAL → nform:norm ∨ nform:it

This states that if an object bears the feature nform, then the latter must be
specified for the value norm or it.14

As argued in the preceding section, in order to describe the data of
(24) a complete observational theory or a simple inheritance theory could
be employed instead of a complete Horn theory. Since the FCRs of GPSG
do not allow disjunctions, observational theories cannot be used for the
induction of FCRs.15 Simple inheritance theories are not adequate for the
induction of FCRs, even though conjunctions occur only in the conclusions
of the FCRs in (25) and thus can be resolved through the introduction of
new FCRs. But among the FCRs in Gazdar et al. (1985) there are also some
with conjunctive premises (e.g., FCR 10: [+ INV, Bar 2] ⊃ [+SUBJ]),
which in general cannot be resolved.

The necessary FCRs can be generated fully automatically with
FCA, however. The task of the grammar developer is thus restricted to the
selection of suitable features and the construction of a feature-structure
context like that of (24).

14 Ganter and Krause (1999) present an alternative procedure for

systematically constructing a complete observational theory of a formal context.

15 The disjunctive operators in implication 17 result from an abbreviatory
notation. Disjunctions in the premisses can always be resolved by introducing a
separated implication for each member of the disjunction.

42

PROOF

In this section we have shown so far how a lexicon in pure list
form, as in (24), can be used to produce either GPSG FCRs or an HPSG
type signature. It remains to show how feature structure contexts can be
derived either from a type signature or from FCRs. Given a type signature,
the adequate feature structure context can be directly constructed from the
set of totally well-typed and sort-resolved feature structures. A detailed
description of the construction method (even for type signatures with co-
references) is given in Petersen (forthcoming). Given a set of FCRs, the
corresponding formal context is equivalent to the information domain of
the FCRs (see Osswald & Petersen, 2003). Hence, FCA enables us to
switch directly from the format of a type signature to FCRs and back.

3.3.2 Inherent lexical features versus inflectional classes

This section will present a further example for the applicability of
FCA in linguistics, and, especially, in the lexicon. In particular we wish to
show how different approaches to the analysis of German noun inflection
can be reconciled with each other.

Classical approaches to inflectional morphology as seen, e.g., in
Wahrig (1966) assign word stems an inflectional class in the lexicon; the
inflectional class itself determines the inflectional paradigm of a stem.
Minimalist Morphology, however, argues that “the membership in an
inflectional subclass should not be arbitrarily assigned, but rather follow
from features that can be memorized: either on the basis of a substantial
property of the stem itself (such as gender or phonological shape), or on the
basis of an additional lexical entry.” (Wunderlich 1999).

Different inflectional paradigms typically reveal numerous
similarities so that it is appropriate to model hierarchical relations between
the classes in order to avoid unnecessary redundancy. Kilbury (2001)
analyzes the inflectional classes of German nouns and proposes the
hierarchical ordering shown in (31).16 From the class NS of strong nouns
without umlaut in plural the class NU with umlaut in plural inherits all the
singular forms as well as the fact that the plural forms end in a schwa-

16 Further examples of hierarchical analyses of the nominal inflection

classes are given in Cahill & Gazdar (1999).

43

PROOF

syllable. According to Minimalist Morphology it is necessary to analyze
such relations in terms of lexically inherent, memorizable features that
determine the class membership of individual nouns.

(31) Analysis of the inflection classes of German nouns and their
hierarchical relations in Kilbury (2001)

(32) shows a list of representative German nouns together with
their inflectional classes and the features proposed in Kilbury (2001) as
determining the class membership; clearly, this is a formal context. In (33)
we see the corresponding concept lattice for this context, in which the
gender features have been omitted for better legibility. The nodes in the
hierarchy, which correspond to an inflectional class, are labelled
accordingly.

44

PROOF

(32) German nouns together with their inflectional classes and the features
that determine these classes according to Kilbury (2001)17

17 The following abbreviations for features are used:
nt typical noun
f feminine
m masculine
schwa stem-final -e (schwa)
inan inanimate
RFS_pl reduced final syllable in plural
uml_pl umlaut in plural
r_pl suffix -r in plural
n_pl suffix -n in plural
n_obl suffix -n in singular nonnominative (i.e., oblique)

45

PROOF

(33) Concept lattice from the context in (32)

ns_gen -n-s in genitive singular

46

PROOF

It is not necessary to know all the features of a noun in order to
inflect it since, normally, some follow from others. For each noun, Kilbury
(2001) therefore distinguishes between the features that are distinctive,
redundant (i.e. those that follow from others), or irrelevant for inflection.
The previously unsolved problem of (semi-)automatically separating the
distinctive and redundant features is one for which the method we have
proposed lends itself. In particular, the representation of feature
distributions in the form of feature implications makes it possible to
characterize the interdependencies between the features explicitly and to
depict them visually.

On the basis of (32) in the following we will show a procedure with
which the membership of nouns in inflectional classes can be determined.
To do this we first augment the context with features for the inflectional
classes. We then consider the set of valid feature implications for the
dichotomous context, i.e., the context, which also contains the negation of
each feature. We obtain seven independent implications in which a class
feature constitutes the conclusion, as shown in (34).

(34) Dependency of the inflectional classes on the features of (32)

Minimalist Morphology assumes a principle of underspecification

according to which unspecified features are interpreted as being negatively
specified. Given this assumption the seven implications can be depicted in
a hierarchy as in (35a). Edges are labelled with the distinctive features that
determine class membership, and these features are percolated down along
the edges.

47

PROOF

(35) Hierarchical representation of the dependency relationship of the
inflectional classes from features of (32)

The features in (32) obviously differ with respect to their
memorizability. The first five are more easily memorized and thus more
plausible than the last six features. In order to take this into account we
have recalculated the valid implications of the context disregarding the last
six features. As shown in (36), this results in three new implications with a
class feature which are not in (34).

(36) Additional dependencies of the inflectional classes on the features of
(32) which are easier to memorize

48

PROOF

When these implications are added, the hierarchy in (35b) results. Note that
dotted edges, in contrast to normal ones, do not denote inheritance. This
hierarchy strongly resembles the manually constructed hierarchy of Kilbury
(2001).

3.4 General remarks on Formal Concept Analysis as a tool for automatic
induction

Most other techniques of data analysis have the aim to drastically
reduce the given information and to obtain a few significant
parameters. By contrast, a concept lattice does not reduce
complexity since it contains all the details of the data represented
by the formal context. [...] Nevertheless it may be exponential in
size, compared to the formal context. Complexity therefore is, of
course, a problem, even though there are efficient algorithms and
advanced program systems. A formal context of moderate size
may have more concepts than one would like to see individually.
(Ganter & Wille 1998)

This quotation expresses the particular strength of concept lattices as well
as the problems that emerge when they are employed for the induction of
hierarchies. FCA is superior to many alternative approaches to induction
inasmuch as it is neutral with respect to the analyzed data and that it
describes them completely. The relations between formal contexts and the
corresponding concept lattices is absolutely transparent since there is
exactly one of the latter for each context. When examination of the valid
attribute implications reveals strange statements, this points either to new
discoveries18 or else to an incomplete or incorrect context. A semi-
automatic attribute exploration can be carried out in order to complete a
context (cf. Stumme 1996; Ganter & Wille 1999).19

We saw that FCA provides three different ways to display data: in
tabular form, as a hierarchy, and as a set of implications. Each of these
representations can be useful as a tool for various tasks in an analysis. Data

18 Remember implication 10 in (30).

19 The program ConImp can be used for feature explorations.

49

PROOF

frequently are available in tabular form, which facilitates input. Information
about a single object can most easily be read from the context, while the
hierarchical concept lattice shows information about connections which are
only implicit in the context. Furthermore, the concept lattice gives a more
compact and less redundant representation of the data in comparision with
the context. Finally, attribute implications express dependencies between
the attributes.

In the following we will address two problems involving the
application of FCA and possible solutions.

3.4.1 Pruning the hierarchies

Concept lattices explicitly include all possible generalizations since each
set of common attributes induces a corresponding node, so the induced
hierarchies can become very large. In the case of the lexical data base
CELEX20 the concept lattice corresponding to the context that describes
German lexemes and their derivational potential contains more than 72,000
concepts. The basic context, which likewise was extracted from CELEX
using our system FCALING, has 9,567 objects and 2,032 attributes.

One possibility for avoiding such large hierarchies is, as Sporleder
(2003) discusses, to take the highly differentiated hierarchies as a point of
departure for pruning; here one may have to accept a high cost for the
computation of large hierarchies, but the approach has the advantage that
the pruning algorithms can be specially tailored to the individual task.
Sporleder achieves this by training her pruning algorithm on manually
constructed hierarchies. The resulting hierarchies, however, are dependent
on the learned pruning parameters. In Sporleder’s approach this is intended,
of course, since the pruning parameters reflect linguistic expert knowledge
and are aimed at inducing hierarchies which are linguistically plausible.

Here we present a possibility for reducing the size of hierarchies
that has already been described in Petersen (2004a). Instead of starting with
the concept lattice of a context we take just the partially ordered set (poset)

20 CELEX, which is compiled by the Dutch Center for Lexical

Information, consists of three large electronic databases and provides users with
detailed English, German, and Dutch lexical data.

50

PROOF

of object and attribute concepts and then add unique maximal and minimal
elements; in this way one obtains a hierarchy, the AOC-poset (attribute-
object-poset), which normally is much more compact than the lattice.21 In
the case of the CELEX context mentioned above the hierarchy is reduced to
one with less than 4,000 nodes. The AOC-poset, just like the concept
lattice, is directly defined by the context. If the AOC-poset is labelled as an
inheritance hierarchy as before, there again results a redundancy-free
inheritance hierarchy, from which the context can be reconstructed.22

The shift to AOC-posets also reduces memory requirements. In
computing an AOC-poset only the attribute and object concepts must be
computed, which can be done independently of the others, so that the
procedure is very efficient. Thus, in comparision to concept lattices AOC-
posets offer a very simple method for the induction of redundancy-free
inheritance hierarchies from large data sets. Inference tasks, however, are
better supported by concept lattices, due to the explicit representation of
shared attributes. Concept lattices are also better when the obtained
hierarchies must be visualized, since AOC-posets normally are less legible
due to their numerous crossing edges. Furthermore, valid attribute
implications can be read off directly only in the lattice.

3.4.2 The problem of nonmonotonic hierarchies

In the preceding sections we have seen how FCA can be used to induce
monotonic inheritance hierarchies. The relationship between a context and
the corresponding monotonic hierarchy is completely transparent.

In contrast, induction of nonmonotonic hierarchies introduces
special problems since there can be no such transparency between the
contexts and hierarchies. Information in nonmonotonic hierarchies can be

21 If a context consists of g objects and m features, then the maximum

number of concepts is 2min{g,m}, while that of nodes in an AOC-poset is at most g +
m + 2.

22 In section 3.3.1 we presented a method to induce non-Horn clauses
from a formal context, which can be applied to construct the complete theory
describing the AOC-poset.

51

PROOF

overwritten arbitrarily often, so there is an unlimited number of
possibilities for representing data in such hierarchies.

The most important decision in constructing a nonmonotonic
hierarchy is about what information should be regarded as regular. We will
now show how monotonic lattices can be employed as a point of departure
for the transformation into nonmonotonic hierarchies.

For a given context we first find the set of attributes which describe
a standard object of the context. Three conditions are placed on such a
default set of attributes (cf. Petersen 2004a): it must be internally
consistent, its use must result in a more compact representation of the data,
and it must be closed with respect to the valid attribute implications of the
context. Such sets are just the intents of concepts with nonempty extents,
and this connection allows such possible sets to be computed efficiently.

Since the choice of a plausible default attribute set is only possible
with the aid of expert knowledge, we propose a semi-automatic procedure.
Our system FCALING presents the user with all theoretically possible
default attribute sets ordered according to the size of the corresponding
extents. After the selection of a set, FCALING calculates the corresponding
nonmonotonic hierarchy. This procedure can be applied interactively in
order to represent subregularities as well. (37) shows a nonmonotonic
inheritance network constructed with our method for the data from the
context in (32). Note that defeasible attributes appear in parentheses. The
hierarchy is based on the default attribute set {gender: masc, sing nom:*,
sing gen:*_s, sing dat:*, sing acc:*, plur nom:*_n, plur gen:*_n, plur
dat:*_n, plur acc:_n}.

52

PROOF

(37) Example of a nonmonotonic inheritance network for the context in
(32)

4 Conclusion

It is clear that the lexicon has become a major focus of linguistic
investigation in the past quarter century. Research in computational
linguistics has increasingly been aimed at modelling hierarchical relations
within the lexicon and their formal representation. In particular, much
recent work has concentrated on inheritance-based formalisms for typed
feature structures, the choice between monotonic and nonmonotonic
versions of these formalisms, and the automatic induction of classifications
in general. Nonmonotonic inheritance is important as a means of capturing
the continuum of regularity, subregularity, and irregularity in the lexicon.

These topics have been at the center of our attention in the present
paper. We have presented our formalism QType, which combines major
elements of typed unification-based formalisms with nonmonotonic
inheritance hierarchies. Crucially, we confine nonmonotonicity to the static
type hierarchy and compile the latter into a strictly monotonic counterpart
for efficient processing.

We have described a technique using Formal Concept Analysis that
aids in the construction of type signatures such as those of QType and other
related formalisms; see Petersen (forthcoming) for an elaboration of this

53

PROOF

technique. At the same time we have shown how FCA provides an
adequate formal basis for explicating the relationship between the type
signatures of HPSG and the feature co-occurrence restrictions of GPSG.

Future work will undoubtedly seek to clarify further the empirical
linguistic motivation for nonmonotonic type hierarchies as well as the
formal constraints governing their automatic induction.

54

PROOF

5 References

Aït-Kaci, Hassan, Robert Boyer, Patrick Lincoln & Roger Nasr
 1989 Efficient implementation of lattice operations. Programming

Languages and Systems 11: 115–146.
Barg, Petra
 1996 Automatischer Erwerb von linguistischem Wissen. Ein Ansatz zur

Inferenz von DATR-Theorien. Tübingen: Niemeyer.
Bernhardt, Wolfram
 2001 Möglichkeiten der Effizienzsteigerung bei der Verarbeitung

getypter Merkmalstrukturen. Master’s thesis, Heinrich-Heine-
Universität Düsseldorf.

Bock, Hans-Hermann & Wolfgang Polasek (eds.)
 1996 Data Analysis and Information Systems. Statistical and

Conceptual Approaches (Proceedings of the 19th Annual
Conference of the Gesellschaft für Klassifikation e.V.,University
of Basel, 1995–03–8/10). Berlin: Springer.

Boguraev, Branimir & James Pustejovsky (eds.)
 1996 Corpus Processing for Lexical Acquisition. Cambridge, Mass.:

MIT Press.
Bouma, Gosse, Frank Van Eynde & Dan Flickinger
 2000 Constraint-based lexica, 43–71, in Van Eynde & Gibbon (2000).
Bouma, Gosse
 1990 Defaults in unification grammar. Proceedings of the Annual

Meeting of the Association for Computational Linguistics 28:
165–173.

Bresnan, Joan (ed.)
 1982 The Mental Representation of Grammatical Relations.

Cambridge, Mass.: MIT Press.
Briscoe, Ted, Valeria de Paiva, & Ann Copestake (eds.)
 1993 Inheritance, Defaults, and the Lexicon. Cambridge: CUP.
Briscoe, Ted & Ann Copestake
 1999 Lexical rules in constraint-based grammars. Computational

Linguistics 25: 487–526.

55

PROOF

Cahill, Lynne & Gerald Gazdar
 1999 German noun inflection. Journal of Linguistics 35: 1–42.
Carpenter, Bob & Gerald Penn
 1999 ALE: The Attribute Logic Engine User's Guide. Murray Hill, NJ:

Bell Laboratories, Lucent Technologies.
Carpenter, Bob
 1993 Sceptical and credulous default unification with application to

templates and inheritance, 13–37, in Briscoe, de Paiva &
Copestake (1993).

Copestake, Ann
 2002 Implementing Typed Feature Structure Grammars. Stanford:

CSLI.
Covington, Michael
 1993 Natural Language Processing for Prolog Programmers.

Englewood Cliffs, NJ: Prentice Hall.
Daelemans, Walter & Gert Durieux
 2002 Inductive lexica, 115–136, in Van Eynde & Gibbon (2000).
De Smedt, Koenraad
 1984 Using object-oriented knowledge representation techniques in

morphology and syntax programming. Proceedings of the
European Conference on Artificial Intelligence 1984: 181–184.

Dörre, Jochen & Michael Dorna
 1993 CUF - A Formalism for Linguistic Knowledge Representation.

DYANA 2 deliverable R.1.2A, Universität Stuttgart.
Evans, Roger & Gerald Gazdar
 1989 Inference in DATR. Proceedings of the Conference of the

European Chapter of the Association for Computational
Linguistics 4: 66–71.

 1996 DATR: a language for lexical knowledge representation.
Computational Linguistics 22: 167–216.

Flickinger, Dan
 1987 Lexical rules in the hierarchical lexicon. PhD thesis, Stanford

University.
Ganter, Bernhard & Rudolf Wille
 1998 Applied lattice theory: Formal concept analysis, 591–605, in

Grätzer (1998).

56

PROOF

 1999 Formal Concept Analysis. Mathematical Foundations. Berlin:
Springer.

Gazdar, Gerald
 1987 Linguistic applications of default inheritance mechanisms, 37–

67, in Whitelock (1987).
Gazdar, Gerald & Geoffrey Pullum
 1982 Generalized Phrase Structure Grammar: A Theoretical Synopsis.

Bloomington, Indiana: Indiana University Linguistics Club.
Gazdar, Gerald, Ewan Klein, Geoffrey Pullum & Ivan Sag
 1985 Generalized Phrase Structure Grammar. Oxford: Blackwell.
Gerdemann, Dale & Paul John King
 1993 Typed feature structures for expressing and computationally

implementing feature cooccurence restrictions. Proceedings of 4.
Fachtagung der Sektion Computerlinguistik der Deutschen
Gesellschaft für Sprachwissenschaft: 33–39.

 1994 The correct and efficient implementation of appropriateness
specifications for typed feature structures. Proceedings of the
15th Conference on Computational Linguistics: 956–960.

Götz, Thilo, Detmar Meurers & Dale Gerdemann
 1997 The ConTroll Manual. Manuscript, Universität Tübingen.
Grätzer, George

1998 General Lattice Theory. Basel: Birkhäuser Verlag.
Grosz, Barbara J. & Mark Stickel (eds.)
 1983 Research on Interactive Acquisition and Use of Knowledge.

Menlo Park, Calif.: SRI.
Hopcroft, John & Jeffrey Ullman
 1979 Introduction to Automata Theory, Languages and Computation.

Reading, MA: Addison-Wesley.
Kaplan, Ronald & Joan Bresnan
 1982 Lexical-functional grammar: a formal system for grammatical

representation, 173–281, in Bresnan (1982).
Karttunen, Lauri
 1986 Radical Lexicalism (= Report No. CSLI-86–68). Stanford: CSLI.
Keller, Bill
 1993 Feature Logics, Infinitary Descriptions and Grammar. Stanford:

CSLI.

57

PROOF

Kilbury, James
 2001 German noun inflection revisited. Journal of Linguistics 37: 339–

353.
Kilbury, James, Petra Naerger [Barg] & Ingrid Renz
 1991 DATR as a lexical component for PATR. Proceedings of the

Conference of the European Chapter of the Association for
Computational Linguistics 5: 137–142.

Koenig, Jean-Pierre
 1999 Lexical Relations. Stanford: CSLI.
Krieger, Hans-Ulrich & John Nerbonne
 1993 Feature-based inheritance networks for computational lexicons,

90–136, in Briscoe et al. (1993).
Krieger Hans-Ulrich, Hannes Pirker & John Nerbonne
 1993 Feature-based allomorphy. Proceedings of the Annual Meeting of

the Association for Computational Linguistics 31: 140–147.
Lascarides, Alex & Ann Copestake
 1999 Default representation in constraint-based frameworks.

Computational Linguistics 25: 55–106.
Osswald, Rainer & Wiebke Petersen
 2002 Induction of classifications from linguistic data. Proceedings of

the ECAI-Workshop on Advances in Formal Concept Analysis for
Knowledge Discovery in Databases.

 2003 A logical approach to data-driven classification. Lecture Notes in
Computer Science 2821: 267–281.

Penn, Gerald
 2000 The algebraic structure of attributed type signatures. PhD thesis,

School of Computer Science, Carnegie Mellon University.
Pereira, Fernando & Stuart Shieber
 1987 Prolog and Natural Language Analysis. Stanford: CSLI.
Petersen, Wiebke
 2004a A set-theoretic approach for the induction of inheritance-

hierachies. In Proceedings of the Joint Conference on Formal
Grammar and Mathematics of Language (FG/MOL-01),
Electronic Notes in Theoretical Computer Science 53: 296–308.

 2004b Automatic induction of type signatures. Unpublished manuscript.

58

PROOF

 forthcoming Induktion lexikalischer Vererbungshierarchien mit Mitteln der
formalen Begriffsanalyse. PhD thesis (in preparation), Institute
for Language and Information, University of Düsseldorf.

Petersen, Wiebke & James Kilbury
 2005 What feature co-occurrence restrictions have to do with type

signatures. Proceedings of the Joint Conference on Formal
Grammar and Mathematics of Language (FG/MOL-05).

Pollard, Carl & Ivan Sag
 1987 Information-based Syntax and Semantics, Vol. 1. Stanford: CSLI.
 1994 Head-driven Phrase Structure Grammar. Stanford: CSLI.
Riehemann, Susanne
 1998 Type-based derivational morphology. Journal of Comparative

Germanic Linguistics 2: 49–77.
Rumpf, Christof
 forthcoming Default inheritance in constraint-based frameworks. PhD thesis

(in preparation), Institute for Language and Information,
University of Düsseldorf.

Russell, Graham, John Carroll & Susan Warwick-Armstrong
 1991 Multiple default inheritance in a unification-based lexicon.

Proceedings of the Annual Meeting of the Association for
Computational Linguistics 29: 215–221.

Russell, Graham, Afzal Ballim, John Carroll & Susan Warwick-Armstrong
 1992 A practical approach to multiple default inheritance for

unification-based lexicons. Computational Linguistics 18: 311–
337.

Sag, Ivan & Thomas Wasow
 1999 Syntactic Theory: A Formal Introduction. Stanford:CSLI.
Shieber, Stuart
 1986 An Introduction to Unification-Based Approaches to Grammar.

Stanford: CSLI.
Shieber, Stuart, Hans Uszkoreit, Fernando Pereira, Jane Robinson & Mabry Tyson
 1983 The formalism and implementation of PATR-II, 39–79, in Grosz

& Sticker (1983).
Sporleder, Caroline
 2003 Discovering lexical generalisations. A supervised machine

learning approach to inheritance hierarchy construction. PhD

59

PROOF

thesis, Institute for Communicationg and Collaborative Systems,
University of Edinburgh.

Stumme, Gerd
 1996 Attribute exploration with background implications and

exceptions, 457–569, in Bock & Polasek (1996).
Touretsky, David
 1986 The Mathematics of Inheritance Systems. London: Pitman.
Van Eynde, Frank & Dafydd Gibbon (eds.)
 2000 Lexicon Development for Speech and Language Processing.

Dordrecht et al.: Kluwer.
Wahrig, Gerhard
 1966 Das Große Deutsche Wörterbuch. Gütersloh: Bertelsmann

Lexikon-Verlag.
Whitelock, Peter (ed.)
 1987 Linguistic Theory and Computer Applications. London:

Academic Press.
Wunderlich, Dieter
 1999 German noun plural reconsidered. Behavioral and Brain Sciences

22: 1044–1045.

60

	Emergence of the present view of the lexicon
	QType: A grammar-development environment
	Survey of QType
	The type signature
	The type system
	Appropriateness conditions
	Inheritance

	Feature logic
	Type constraints
	Relational constraints
	Phrase-structure rules and lexical entries
	Nonmonotonic inheritance

	Induction of inheritance hierarchies
	General remarks
	Formal Concept Analysis
	Formal contexts
	Formal concepts
	Concept lattices
	Complete theories and concept lattices

	Examples using FCA
	Strategies for avoiding redundancy in the lexicon: feature c
	Inherent lexical features versus inflectional classes

	General remarks on Formal Concept Analysis as a tool for aut
	Pruning the hierarchies
	The problem of nonmonotonic hierarchies

	Conclusion
	References

